A DIRECT PROOF OF MULMULEY'S WEAK \#P VERSUS $\mathcal{N C}$ RESULT

BORIS ALEXEEV AND JACOB TSIMERMAN

Abstract. We present a direct proof of a result Ketan Mulmuley presented at the Institute for Advanced Study during his lecture series "On \mathcal{P} vs $\mathcal{N} \mathcal{P}$, Geometric Complexity Theory, and the Riemann Hypothesis" on February $9-11,2009$. The result is intended as a "weak form" of $\# \mathcal{P}$ versus $\mathcal{N C}$ in characteristic zero.

Theorem. Let $m \geq n \geq 2$, and let Y be an $m \times m$ matrix with variable entries

$$
\begin{cases}x_{i, j} & \text { if } 1 \leq i \leq n \text { and } 1 \leq j \leq n, \\ y_{i, j} & \text { else. }\end{cases}
$$

Call X the top-left $n \times n$ submatrix of Y. Then, there does not exist a polynomial g and complex-valued $m \times m$ matrices B and C so that

$$
\operatorname{perm} X=g\left(\operatorname{tr}(B Y C), \ldots, \operatorname{tr}\left((B Y C)^{m}\right)\right)
$$

Remark. The proof below carries over to a similar "homogeneous" version stated by Mulmuley.
Proof. We make a series of reductions:
Assuming $y_{i, j}=0$. We may set all of the y 's to zero because none appear in perm X.
Assuming $C=I$. We have that $\operatorname{tr}(B Y C)=\operatorname{tr}(C B Y)$, and moreover that $\operatorname{tr}\left((B Y C)^{i}\right)=\operatorname{tr}\left((C B Y)^{i}\right)$, so we may replace B with $C B$ and C with the identity matrix.

Assuming $m=n$. We may assume that $b_{i, j}=0$ if $j>n$ because those entries do not affect the product $B Y$. Setting D to be the top-left $n \times n$ submatrix of B, we have

$$
\operatorname{tr}\left((B Y)^{i}\right)=\operatorname{tr}\left((Y B)^{i}\right)=\operatorname{tr}\left((X D)^{i}\right)=\operatorname{tr}\left((D X)^{i}\right)
$$

so by replacing B with D and Y with X, we have reduced to the case $m=n$.
Assuming $n=2$. We may pick a vector v with at most two zero entries such that the bottom two entries of $B v$ are zero. Consider the matrix X consisting of $n-2$ columns of v, and a 2×2 variable submatrix X^{\prime} in the last two columns in any two rows that include the rows where v is zero. Then $B X$ is block upper-triangular with an $(n-2) \times(n-2)$ submatrix of constants and a 2×2 submatrix $B^{\prime} X^{\prime}$. Since X has nontrivial permanent by construction, and constants from $\operatorname{tr}\left((B X)^{i}\right)$ can be folded into g, we can reduce to $n=2$.

Finish. In the 2×2 case, we may consider polynomials in $\operatorname{tr}(B X)$ and $\operatorname{det}(B X)$ instead of $\operatorname{tr}(B X)$ and $\operatorname{tr}\left((B X)^{2}\right)$ because both pairs generate the same functions. If $X=\left(\begin{array}{cc}a & a \\ b & b\end{array}\right)$, we seek an identity of the form perm $X=2 a b=g(\operatorname{tr}(B X), \operatorname{det}(B X))$. But $\operatorname{tr}(B X)$ is a linear form in a and b and $\operatorname{det}(B X)=0$ since X is singular, so this is impossible.

[^0]
[^0]: Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544-1000 E-mail address: balexeev@math.princeton.edu, jtsimerm@math.princeton.edu

